Quality-Diversity optimisation (QD) has proven to yield promising results across a broad set of applications. However, QD approaches struggle in the presence of uncertainty in the environment, as it impacts their ability to quantify the true performance and novelty of solutions. This problem has been highlighted multiple times independently in previous literature. In this work, we propose to uniformise the view on this problem through four main contributions. First, we formalise a common framework for uncertain domains: the Uncertain QD setting, a special case of QD in which fitness and descriptors for each solution are no longer fixed values but distribution over possible values. Second, we propose a new methodology to evaluate Uncertain QD approaches, relying on a new per-generation sampling budget and a set of existing and new metrics specifically designed for Uncertain QD. Third, we propose three new Uncertain QD algorithms: Archive-sampling, Parallel-Adaptive-sampling and Deep-Grid-sampling. We propose these approaches taking into account recent advances in the QD community toward the use of hardware acceleration that enable large numbers of parallel evaluations and make sampling an affordable approach to uncertainty. Our final and fourth contribution is to use this new framework and the associated comparison methods to benchmark existing and novel approaches. We demonstrate once again the limitation of MAP-Elites in uncertain domains and highlight the performance of the existing Deep-Grid approach, and of our new algorithms. The goal of this framework and methods is to become an instrumental benchmark for future works considering Uncertain QD.
翻译:质量差异优化(QD) 证明在一系列广泛的应用中取得了有希望的成果。然而,QD 方法在环境不确定的情况下挣扎,因为它影响到它们量化真正绩效和解决方案新颖性的能力。这个问题在以前的文献中多次被独立地强调。在这项工作中,我们提议通过四种主要贡献统一对这一问题的看法。首先,我们为不确定的领域正式制定一个共同框架:不确定的QD 设置,这是QD 方法的一个特殊案例,其中每种解决方案的健身和描述器不再固定值,而是分布在可能的价值之上。第二,我们提出一种新的方法来评价不确定的QD方法,依靠新的每代抽样预算,以及专门为不确定性QD设计的一套现有和新的衡量标准。第三,我们建议采用三种新的不确定的QD算法:档案取样、平行的抽样和深度取样。我们提议这些方法将考虑到QD 社区最近在深度的深度显示率方面取得的进步,但为了实现这种稳定的QD 方法,我们当前基准的不确定性和新指标的快速化方法的使用,我们再次提出现有的数字,我们现有的硬件基准的精确性评估将使得我们现有的数字能够用来进行新的比较。