Knowledge-based visual question answering (VQA) requires external knowledge beyond the image to answer the question. Early studies retrieve required knowledge from explicit knowledge bases (KBs), which often introduces irrelevant information to the question, hence restricting the performance of their models. Recent works have resorted to using a powerful large language model (LLM) as an implicit knowledge engine to acquire the necessary knowledge for answering. Despite the encouraging results achieved by these methods, we argue that they have not fully activated the capacity of the blind LLM as the provided textual input is insufficient to depict the required visual information to answer the question. In this paper, we present Prophet -- a conceptually simple, flexible, and general framework designed to prompt LLM with answer heuristics for knowledge-based VQA. Specifically, we first train a vanilla VQA model on a specific knowledge-based VQA dataset without external knowledge. After that, we extract two types of complementary answer heuristics from the VQA model: answer candidates and answer-aware examples. Finally, the two types of answer heuristics are jointly encoded into a formatted prompt to facilitate the LLM's understanding of both the image and question, thus generating a more accurate answer. By incorporating the state-of-the-art LLM GPT-3, Prophet significantly outperforms existing state-of-the-art methods on four challenging knowledge-based VQA datasets. To demonstrate the generality of our approach, we instantiate Prophet with the combinations of different VQA models (i.e., both discriminative and generative ones) and different LLMs (i.e., both commercial and open-source ones).
翻译:暂无翻译