During the training of machine learning models, they may store or "learn" more information about the training data than what is actually needed for the prediction or classification task. This is exploited by property inference attacks which aim at extracting statistical properties from the training data of a given model without having access to the training data itself. These properties may include the quality of pictures to identify the camera model, the age distribution to reveal the target audience of a product, or the included host types to refine a malware attack in computer networks. This attack is especially accurate when the attacker has access to all model parameters, i.e., in a white-box scenario. By defending against such attacks, model owners are able to ensure that their training data, associated properties, and thus their intellectual property stays private, even if they deliberately share their models, e.g., to train collaboratively, or if models are leaked. In this paper, we introduce property unlearning, an effective defense mechanism against white-box property inference attacks, independent of the training data type, model task, or number of properties. Property unlearning mitigates property inference attacks by systematically changing the trained weights and biases of a target model such that an adversary cannot extract chosen properties. We empirically evaluate property unlearning on three different data sets, including tabular and image data, and two types of artificial neural networks. Our results show that property unlearning is both efficient and reliable to protect machine learning models against property inference attacks, with a good privacy-utility trade-off. Furthermore, our approach indicates that this mechanism is also effective to unlearn multiple properties.


翻译:在机器学习模型的培训过程中,他们可能储存或“阅读”更多有关培训数据的信息,而不是预测或分类任务所需的实际数据。这被财产推断攻击所利用,这些攻击旨在从某一模型的培训数据中提取统计属性,而没有获得培训数据本身。这些属性可能包括照片质量,以识别相机模型,显示产品目标受众的年龄分布,或包括主机类型,以完善计算机网络中的恶意攻击。当攻击者能够获取所有模型参数,即白箱情景中的数据时,这种攻击尤其准确。通过对这种攻击进行辩护,模型所有人能够确保其培训数据、相关属性以及因此其知识产权保持私有性,即使他们有意分享其模型,例如合作培训,或者模型被泄露。在本文中,我们引入了财产不学习机制,一个防止白箱财产攻击的有效防御机制,独立于培训数据类型、模型任务或财产数量。通过系统修改其培训的重量和知识产权数据库,我们无法系统地评估其不可靠财产攻击,我们所选择的数据类型和图表类型不能显示一种不同的资产分析结果。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员