Federated Learning (FL) is a novel framework of decentralized machine learning. Due to the decentralized feature of FL, it is vulnerable to adversarial attacks in the training procedure, e.g. , backdoor attacks. A backdoor attack aims to inject a backdoor into the machine learning model such that the model will make arbitrarily incorrect behavior on the test sample with some specific backdoor trigger. Even though a range of backdoor attack methods of FL has been introduced, there are also methods defending against them. Many of the defending methods utilize the abnormal characteristics of the models with backdoor or the difference between the models with backdoor and the regular models. To bypass these defenses, we need to reduce the difference and the abnormal characteristics. We find a source of such abnormality is that backdoor attack would directly flip the label of data when poisoning the data. However, current studies of the backdoor attack in FL are not mainly focus on reducing the difference between the models with backdoor and the regular models. In this paper, we propose Adversarial Knowledge Distillation(ADVKD), a method combine knowledge distillation with backdoor attack in FL. With knowledge distillation, we can reduce the abnormal characteristics in model result from the label flipping, thus the model can bypass the defenses. Compared to current methods, we show that ADVKD can not only reach a higher attack success rate, but also successfully bypass the defenses when other methods fails. To further explore the performance of ADVKD, we test how the parameters affect the performance of ADVKD under different scenarios. According to the experiment result, we summarize how to adjust the parameter for better performance under different scenarios. We also use several methods to visualize the effect of different attack and explain the effectiveness of ADVKD.


翻译:Fled Learning (FL) 是分散式机器学习的新框架。 由于 FL 的分散式参数, 它很容易在培训程序中受到对抗性攻击, 例如, 后门攻击。 后门攻击的目的是将一个后门输入机器学习模型, 这样模型会在测试样本中以某些特定的后门触发器进行任意错误的行为。 尽管FL 的一系列后门攻击方法已经引入, 但也有一些防守方法 。 许多防御方法使用了带有后门参数的模型的异常性能, 或者是带有后门和常规模型的差别 。 要绕过这些防御, 我们需要减少差异和异常特征。 我们发现后门攻击的一个原因就是, 在污染数据时, 后门攻击会直接翻转数据标签。 然而, FL 对后门攻击的当前研究并不主要侧重于减少后门模型和常规模型之间的差别。 在本文中, 我们建议 Aversarial Onal Stillation (ADVKD), 一种方法不是将知识与后门攻击和常规模型相结合, 我们也可以在FL 的后门攻击中, 的反动性变换式的运行方法。 因此, 将实验的性测试方法调整。 我们也可以将实验的反向后路的反向, 我们的反向后路的反向后路测试方法。 我们的反向后路的反向后路的反向, 变。

1
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年10月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员