We show that isogeometric Galerkin discretizations of eigenvalue problems related to the Laplace operator subject to any standard type of homogeneous boundary conditions have no outliers in certain optimal spline subspaces that preserve full approximation power. Roughly speaking, these optimal subspaces are obtained from the full spline space defined on certain uniform knot sequences by imposing specific additional boundary conditions. The spline subspaces of interest have been introduced in the literature some years ago when proving their optimality with respect to Kolmogorov $n$-widths in $L^2$-norm for some function classes. The eigenfunctions of the Laplacian -- with any standard type of homogeneous boundary conditions -- belong to such classes. Here, we complete the analysis of the approximation properties of these optimal spline subspaces. In particular, we provide explicit $L^2$ and $H^1$ error estimates for Ritz projectors in the univariate and in the multivariate tensor-product setting. Besides their intrinsic interest, these estimates imply that, for a fixed number of degrees of freedom, all the eigenfunctions and the corresponding eigenvalues are well approximated, without loss of accuracy in any frequency. Thus, there are no spurious numerical values in the approximated spectrum. In other words, the considered subspaces provide fully accurate outlier-free discretizations in the univariate and in the multivariate tensor-product case. This main contribution is complemented by an explicit construction of B-spline-like bases for the considered spline subspaces. Their role as discretization spaces for addressing general problems with non-homogeneous boundary behavior is discussed as well.


翻译:我们显示,与受任何标准类型单一边界条件约束的Laplace操作员有关的电子价值问题的等离质Galerkin分解,在某些保持全近似功率的最佳样板子空间中,这些最佳的亚空间没有异常值。 大致上, 我们从某些统一结节序列中定义的全样空间中获得了这些最佳的亚空间, 规定了特定的额外的边界条件。 几年前, 文献中引入了与Kolmogorov 以美元- 维特为单位, 以美元- 维特为单位, 在某些功能类别中, 以L2美元- 诺尔为单位。 Laplaceian 基点的异常值, 与任何标准类型的同质边界条件一样, 属于此类类别。 在这里, 我们完成对这些最佳结晶度子子子子子空间的近似特性的分析。 特别是, 我们提供明确的 $L2美元和 $H1美元 误差估计数, 以利兹投影投影器在单体和多变量中, 除了其内在利益外, 这些估计意味着, 在固定的准确的地空域中, 度中, 直径中, 其正值的正值的正值中, 的正值的正值的精确值是以直值的直值的直值值值的直值, 直值为直值, 直值的直径值为直值值的直值, 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月28日
VIP会员
相关VIP内容
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员