Employing skin-like tactile sensors on robots enhances both the safety and usability of collaborative robots by adding the capability to detect human contact. Unfortunately, simple binary tactile sensors alone cannot determine the context of the human contact -- whether it is a deliberate interaction or an unintended collision that requires safety manoeuvres. Many published methods classify discrete interactions using more advanced tactile sensors or by analysing joint torques. Instead, we propose to augment the intention recognition capabilities of simple binary tactile sensors by adding a robot-mounted camera for human posture analysis. Different interaction characteristics, including touch location, human pose, and gaze direction, are used to train a supervised machine learning algorithm to classify whether a touch is intentional or not with an F1-score of 86%. We demonstrate that multimodal intention recognition is significantly more accurate than monomodal analysis with the collaborative robot Baxter. Furthermore, our method can also continuously monitor interactions that fluidly change between intentional or unintentional by gauging the user's attention through gaze. If a user stops paying attention mid-task, the proposed intention and attention recognition algorithm can activate safety features to prevent unsafe interactions. In addition, we employ a feature reduction technique that reduces the amount of training data required and renders the proposed method agnostic to the robot architecture and touch sensor layout.


翻译:在机器人身上使用皮肤类触动传感器,通过增加探测人类接触的能力,提高了协作机器人的安全和可用性。不幸的是,简单的二进制触动传感器本身无法确定人类接触的背景 -- -- 不管是蓄意互动还是非意外碰撞,需要安全操作。许多公布的方法使用更先进的触动传感器或分析联合托盘对离散互动进行分类。相反,我们提议通过增加机器人挂载的相机进行人类姿态分析,提高简单二进制触动传感器的识别能力。不同的互动特征,包括触摸地点、人姿势和视视线方向,被用来培训监督的机器学习算法,以对触动是否有意接触进行分类 -- -- 需要86%的F1-点。我们证明,多式联运意向识别比与协作机器人巴克斯特的单一模式分析要更准确得多。此外,我们的方法还可以通过通过透视测量用户的注意力,不断监测有意或无意之间发生流动变化的相互作用。如果用户停止关注中任务,则使用拟议的意向和注意度算法,拟议的识别度算法可以激活安全性特征,从而防止不安全的图像结构。此外,我们还采用拟议的方法将降低了移动式结构。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
109+阅读 · 2020年3月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月18日
Arxiv
0+阅读 · 2023年2月18日
Arxiv
0+阅读 · 2023年2月17日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员