Network seeding for efficient information diffusion over time-varying graphs~(TVGs) is a challenging task with many real-world applications. There are several ways to model this spatio-temporal influence maximization problem, but the ultimate goal is to determine the best moment for a node to start the diffusion process. In this context, we propose Spatio-Temporal Influence Maximization~(STIM), a model trained with Reinforcement Learning and Graph Embedding over a set of artificial TVGs that is capable of learning the temporal behavior and connectivity pattern of each node, allowing it to predict the best moment to start a diffusion through the TVG. We also develop a special set of artificial TVGs used for training that simulate a stochastic diffusion process in TVGs, showing that the STIM network can learn an efficient policy even over a non-deterministic environment. STIM is also evaluated with a real-world TVG, where it also manages to efficiently propagate information through the nodes. Finally, we also show that the STIM model has a time complexity of $O(|E|)$. STIM, therefore, presents a novel approach for efficient information diffusion in TVGs, being highly versatile, where one can change the goal of the model by simply changing the adopted reward function.
翻译:在时间变化的图形~(TVGs)中,高效信息传播的网络观测是一个具有挑战性的任务,有许多现实世界应用。有几种方法可以模拟这种时空影响最大化问题,但最终目标是确定节点启动扩散进程的最佳时机。在这方面,我们提议Spatio-时间影响最大化~(STIM),这是一个经过强化学习培训的模型,并嵌入一套人工电视Gs,能够学习每个节点的时间行为和连接模式,从而使其能够预测通过TVG开始传播的最佳时刻。我们还开发了一套用于培训的人工电视Gs,用于模拟TVGs的随机传播进程,表明STIM网络甚至可以在非决定性环境中学习有效的政策。STIM还用一个真实世界的TVGG来评价它如何通过节点有效地传播信息。最后,我们还表明,STIM模型有一个时间的复杂度,即 $(QE_E_QQ_Q),用来模拟在TVSTIM中展示一个高效的传播功能。因此,它可以展示一个创新的版本。