Open-domain question answering can be reformulated as a phrase retrieval problem, without the need for processing documents on-demand during inference (Seo et al., 2019). However, current phrase retrieval models heavily depend on sparse representations and still underperform retriever-reader approaches. In this work, we show for the first time that we can learn dense representations of phrases alone that achieve much stronger performance in open-domain QA. We present an effective method to learn phrase representations from the supervision of reading comprehension tasks, coupled with novel negative sampling methods. We also propose a query-side fine-tuning strategy, which can support transfer learning and reduce the discrepancy between training and inference. On five popular open-domain QA datasets, our model DensePhrases improves over previous phrase retrieval models by 15%-25% absolute accuracy and matches the performance of state-of-the-art retriever-reader models. Our model is easy to parallelize due to pure dense representations and processes more than 10 questions per second on CPUs. Finally, we directly use our pre-indexed dense phrase representations for two slot filling tasks, showing the promise of utilizing DensePhrases as a dense knowledge base for downstream tasks.
翻译:开放式问题解答可以重塑为短语检索问题,无需在推断期间按需处理文件(Seo等人,2019年)。然而,目前的短语检索模型在很大程度上依赖于稀少的表达形式,仍然低于完善的检索器-阅读器方法。在这项工作中,我们第一次显示,我们可以单独学习密集的短语表达方式,在开放的域域域内能够取得更强的性能。我们提出了一个有效的方法,从阅读理解任务监督中学习短语表达方式,加上新的负面抽样方法。我们还提出了一个查询端微调战略,可以支持转移学习,减少培训和推断之间的差异。在五种流行的开放式域域域名QA数据集方面,我们的模式DensePhrases比先前的短语检索模型改进了15%至25%的绝对精确度,并与状态级的检索器阅读器模型的性能相匹配。我们的模式很容易与纯稠密的表达方式相平行,因为在CPU上每秒有超过10个问题。最后,我们直接使用我们前指数密度的密集的短语表达方式,用于两个高空基任务,以显示高空基任务的承诺。