A geometric framework to improve a plug-in estimator in terms of asymptotic bias is developed. It is based on an adjustment of a likelihood, that is, multiplying a non-random function of the parameter, called the adjustment factor, to the likelihood. The condition for the second-order asymptotic unbiasedness (no bias up to $O(n^{-1})$ for a sample of size $n$) is derived. Bias of a plug-in estimator emerges as departure from a kind of harmonicity of the function of the plug-in estimator, and the adjustment of the likelihood is equivalent to modify the model manifold such that the departure from the harmonicity is canceled out. The adjustment is achieved by solving a partial differential equation. In some cases the adjustment factor is given as an explicit integral. Especially, if a plug-in estimator is a function of the geodesic distance, an explicit representation in terms of the geodesic distance is available, thanks to differential geometric techniques for solving partial differential equations. As an example of the adjustment factor, the Jeffreys prior is specifically discussed. Some illustrative examples are provided.
翻译:开发了一个改善无症状偏差的插件估计值的几何框架。 它基于一种可能性的调整, 即将参数的非随机功能( 称为调整系数)乘以到可能性。 第二顺序的无症状不偏差( 对一个大小为美元样本的不偏差最高不超过$O( ⁇ -1} 美元) 的条件是产生的。 插件估计值的比值出现时, 偏离了插件估量器功能的某种和谐度, 而这种可能性的调整相当于修改模型的方程式, 从而取消对错差的偏差。 调整是通过解决部分差异方程式实现的。 在某些情况下, 调整系数被作为明确的有机组成部分给出。 特别是, 如果插件估量器是地理偏差的函数, 地理偏差距离的清晰表示值是存在的, 由于解决部分差异方程式的不同的几何技术, 某些调整因素是示例。 作为调整因素的一个示例, 之前的杰弗里是具体讨论过的示例。