We consider the problem of testing for two Gibbs probabilities $\mu_0$ and $\mu_1$ defined for a dynamical system $(\Omega,T)$. Due to the fact that in general full orbits are not observable or computable, one needs to restrict to subclasses of tests defined by a finite time series $h(x_0), h(x_1)=h(T(x_0)),..., h(x_n)=h(T^n(x_0))$, $x_0\in \Omega$, $n\ge 0$, where $h:\Omega\to\mathbb R$ denotes a suitable measurable function. We determine in each class the Neyman-Pearson tests, the minimax tests, and the Bayes solutions, and show the asymptotic decay of their risk functions, as $n\to\infty$. In the case of $\Omega$ being a symbolic space, for each $n\in \mathbb{N}$, these optimal tests rely on the information of the measures for cylinder sets of size $n$.
翻译:我们考虑的是两种Gibbs概率的测试问题(美元=0.0美元)和美元=0.1美元(美元=0.1美元)。由于在一般情况下全轨道无法观测或计算,因此需要将测试限于限定时间序列(美元=0.0)、h(x_1)=h(T(x_0)),...,h(x_n)=h(T ⁇ n(x_0)美元),x_0美元=美元(美元=0.00美元);美元=0.00美元;美元=0.00美元;美元=0.00美元;美元=0.00美元;全轨道无法观测或可计算;由于在一般情况下,全轨道无法观测或可计算;因此,需要将测试限制在每一类内曼-皮尔逊试验、微缩缩轴试验和海湾溶液中界定的亚类试验,并显示其风险功能的微腐蚀度为$\ infty.fty$(美元).如果美元=象征性的空间,则美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元。这些最佳测试依靠每套标准。