项目名称: 发展多尺度模拟方法紧密结合光谱技术以研究蛋白质折叠的动力学机理

项目编号: No.21203179

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理化学

项目作者: 赵英

作者单位: 大连民族学院

项目金额: 22万元

中文摘要: 蛋白质折叠是一切生物生命活动的最基本过程。深刻地理解蛋白质折叠和误折 叠的微观动力学机理及其相互竞争机制,具有至关重要的科学意义和学术价值。我们将发展一套准确、合理、有效的多尺度模拟方法:通过自下而上的"粗粒化"模拟方法获得更长时间的热力学分布和动力学完备采样系综;利用自上而下的"反映射"模拟方法把粗粒化模拟轨迹转化成全原子模拟轨迹;通过光谱计算进而与超快相关光谱实验技术紧密结合起来,对复杂而典型的蛋白质大分子的微观结构和统计分布以及折叠热力学和动力学机理进行系统而深入的理论研究。我们将进一步完善杂化粒子场的模拟方法,通过引入粒子间的静电相互作用以更好地粗粒化模拟蛋白质大分子在水溶液中长时间(微秒以上)折叠过程。同时,我们将发展反映射模拟方法,为研究蛋白质在分子水平上的微观热力学和动力学机制提供帮助。这里提议的技术将被用来协助解释导致帕金森氏症等蛋白质误折叠疾病的致病机理。

中文关键词: 多尺度模拟;粗粒化;反映射;光谱计算;蛋白质折叠

英文摘要: Protein folding is the most basic process of all biological life. It has vital scientific significance and academic value that profoundly understand the mechanisms of microscopic dynamics of the protein folding and misfolding and their competition. We will develop an accurate, reasonable, and effective multi-scale simulation method: through bottom-up "Coarse-Gained" simulation method to obtain longer thermodynamic distribution and complete dynamic sampling ensemble; using top-down "Reverse-Mapping" simulation method to convert coarse-grained simulation trajectory into fully atomistic simulation trajectory; and after spectrum calculation to closely combine with ultrafast spectroscopy experiments; thus to theoretically investigate the micro-structure and statistical distribution of the complex and typical protein macromolecules, and the thermodynamics and kinetics of protein folding deeply and systematically. We will further improve the hybrid particle-field simulation method, through the introduction of electrostatic interactions between particles to coarse-grained simulate the folding process of protein macromolecules in aqueous solution for a long time (microseconds or more). In the meantime, we will develop "Reverse Mapping" method to provide the assistance to study the thermodynamic and kinetic mechanism of p

英文关键词: Multi-scale Simulation;Coarse-Grain;Back-Mapping;Spectroscopy Calculation;Protein Folding

成为VIP会员查看完整内容
0

相关内容

《深度学习中神经注意力模型》综述论文
专知会员服务
113+阅读 · 2021年12月15日
重磅!数字孪生技术应用白皮书(2021)
专知会员服务
258+阅读 · 2021年12月8日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
87+阅读 · 2021年8月11日
专知会员服务
154+阅读 · 2021年6月10日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
79+阅读 · 2021年5月14日
【经典书】统计学,806页pdf,解锁数据的力量
专知会员服务
80+阅读 · 2020年8月12日
新时期我国信息技术产业的发展
专知会员服务
71+阅读 · 2020年1月18日
深度学习预测蛋白质-蛋白质相互作用
机器之心
5+阅读 · 2022年1月15日
自动化所团队揭示多尺度动态编码,助力脉冲网络实现高效强化学习
中国科学院自动化研究所
0+阅读 · 2021年12月13日
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月19日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
19+阅读 · 2018年6月27日
小贴士
相关VIP内容
《深度学习中神经注意力模型》综述论文
专知会员服务
113+阅读 · 2021年12月15日
重磅!数字孪生技术应用白皮书(2021)
专知会员服务
258+阅读 · 2021年12月8日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
87+阅读 · 2021年8月11日
专知会员服务
154+阅读 · 2021年6月10日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
79+阅读 · 2021年5月14日
【经典书】统计学,806页pdf,解锁数据的力量
专知会员服务
80+阅读 · 2020年8月12日
新时期我国信息技术产业的发展
专知会员服务
71+阅读 · 2020年1月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员