Machine learning techniques have successfully been used to extract structural information such as the crystal space group from powder X-ray diffractograms. However, training directly on simulated diffractograms from databases such as the ICSD is challenging due to its limited size, class-inhomogeneity, and bias toward certain structure types. We propose an alternative approach of generating synthetic crystals with random coordinates by using the symmetry operations of each space group. Based on this approach, we demonstrate online training of deep ResNet-like models on up to a few million unique on-the-fly generated synthetic diffractograms per hour. For our chosen task of space group classification, we achieved a test accuracy of 79.9% on unseen ICSD structure types from most space groups. This surpasses the 56.1% accuracy of the current state-of-the-art approach of training on ICSD crystals directly. Our results demonstrate that synthetically generated crystals can be used to extract structural information from ICSD powder diffractograms, which makes it possible to apply very large state-of-the-art machine learning models in the area of powder X-ray diffraction. We further show first steps toward applying our methodology to experimental data, where automated XRD data analysis is crucial, especially in high-throughput settings. While we focused on the prediction of the space group, our approach has the potential to be extended to related tasks in the future.


翻译:机器学习技术已成功用于从粉末X射线衍射图中提取结构信息,例如晶体空间群。然而,直接在ICSD等数据库中的模拟衍射图上进行训练是具有挑战性的,由于其规模有限、类不均匀性和偏向某些结构类型。本文提出了一种替代方法,通过使用每个空间群的对称操作生成具有随机坐标的合成晶体。我们基于这种方法,演示了对高达每小时几百万个独特的即时生成的合成衍射图的深度ResNet-like模型的在线训练。对于我们选择的空间群分类任务,我们在大多数空间群中对未见过的ICSD结构类型实现了79.9%的测试精度。这超过了直接在ICSD晶体上训练的当前最先进方法的56.1%的精度。我们的结果表明,可以使用合成晶体从ICSD粉末衍射图中提取结构信息,这使得在粉末X射线衍射领域应用非常大的最先进机器学习模型成为可能。我们进一步展示了将我们的方法应用于实验数据的第一步,其中自动化XRD数据分析至关重要,尤其是在高通量设置中。虽然我们专注于预测空间群,但我们的方法有望在未来扩展到相关任务。

0
下载
关闭预览

相关内容

Nature Methods | 蛋白质序列的深度嵌入和比对
专知会员服务
6+阅读 · 2022年12月26日
用于分子Linker设计的等变3D条件扩散模型
专知会员服务
5+阅读 · 2022年10月24日
专知会员服务
14+阅读 · 2021年9月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
0+阅读 · 2023年5月12日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关VIP内容
Nature Methods | 蛋白质序列的深度嵌入和比对
专知会员服务
6+阅读 · 2022年12月26日
用于分子Linker设计的等变3D条件扩散模型
专知会员服务
5+阅读 · 2022年10月24日
专知会员服务
14+阅读 · 2021年9月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员