Recent work of Acharya et al. (NeurIPS 2019) showed how to estimate the entropy of a distribution $\mathcal D$ over an alphabet of size $k$ up to $\pm\epsilon$ additive error by streaming over $(k/\epsilon^3) \cdot \text{polylog}(1/\epsilon)$ i.i.d. samples and using only $O(1)$ words of memory. In this work, we give a new constant memory scheme that reduces the sample complexity to $(k/\epsilon^2)\cdot \text{polylog}(1/\epsilon)$. We conjecture that this is optimal up to $\text{polylog}(1/\epsilon)$ factors.
翻译:Acharya等人(NeurIPS 2019)最近的工作显示,如何通过流出$(k/\ epsilon}3)\cdot\text{polylog}(1/\epsilon) i.d. 样本并仅使用O(1)美元记忆字来估计一个以美元为单位的字母($k) 的发行量 $\ mathcal D$ 的倍数, 以美元为单位( k/\ epsilon_ 2)\ cdot \ text{polylog} (1/\\ ipsilon) 添加错误, 以美元为单位( i. d. ) 。 在这项工作中, 我们给出一个新的恒定的内存方案, 将样本复杂性降低到$( k/ ipslon)\ pext{polylog} (1/\ ipsilon) $。