Graph neural networks (GNN) are very popular methods in machine learning and have been applied very successfully to the prediction of the properties of molecules and materials. First-order GNNs are well known to be incomplete, i.e., there exist graphs that are distinct but appear identical when seen through the lens of the GNN. More complicated schemes have thus been designed to increase their resolving power. Applications to molecules (and more generally, point clouds), however, add a geometric dimension to the problem. The most straightforward and prevalent approach to construct graph representation for molecules regards atoms as vertices in a graph and draws a bond between each pair of atoms within a chosen cutoff. Bonds can be decorated with the distance between atoms, and the resulting "distance graph NNs" (dGNN) have empirically demonstrated excellent resolving power and are widely used in chemical ML, with all known indistinguishable graphs being resolved in the fully-connected limit. Here we show that even for the restricted case of fully-connected graphs induced by 3D atom clouds dGNNs are not complete. We construct pairs of distinct point clouds that generate graphs that, for any cutoff radius, are equivalent based on a first-order Weisfeiler-Lehman test. This class of degenerate structures includes chemically-plausible configurations, setting an ultimate limit to the expressive power of some of the well-established GNN architectures for atomistic machine learning. Models that explicitly use angular or directional information in the description of atomic environments can resolve these degeneracies.
翻译:图形神经网络 (GNN) 是机器学习中非常流行的方法, 并被非常成功地应用到分子和材料特性的预测中。 第一级GNN是众所周知的不完整的, 也就是说, 现有图表通过 GNN 的透镜来看是截然不同的, 但从GNN 的角度看却看起来是一样的。 因此, 设计更复杂的计划是为了增加其解析力。 分子( 更一般而言, 点云) 的应用增加了一个几何层面的问题。 最直接和最普遍的方法是构建分子的图形代表, 将原子作为图中的一个顶端, 并在所选的截断点中绘制每对一对原子的链接。 邦德可以与原子之间的距离进行分解, 而由此产生的“ 远程图形 NNNNS (dNN) ” (dNNNN) 的模型则以实验方式展示出很好的解析力, 而在化学 ML 中, 所有已知的不易分解的图形都在完全的界限中解析。 我们在这里显示, 3DNNNNNNP 的直径定的直径定的直径定的平极结构中, 的直径平极结构中, 我们的构造可以完全地在这种平面的构造中, 。