Any integral convex polytope $P$ in $\mathbb{R}^N$ provides a $N$-dimensional toric variety $X_P$ and an ample divisor $D_P$ on this variety. This paper gives an explicit construction of the algebraic geometric error-correcting code on $X_P$ , obtained by evaluating global section of $\mathcal{L}(D_P)$ on every rational point of $X_P$. This work presents an extension of toric codes analogous to the one of Reed-Muller codes into projective ones, by evaluating on the whole variety instead of considering only points with non-zero coordinates. The dimension of the code is given in terms of the number of integral points in the polytope $P$ and an algorithmic technique to get a lowerbound on the minimum distance is described.
翻译:以$\mathbb{R ⁇ N$$美元计算的任何组合体聚苯乙烯聚苯乙烯元P$美元,均提供美元维元的立方体品种$X_P$和大量divisor $D_P$的这种品种。本文明确构建了以$X_P$为单位的代谢几何错误校正代码,该代码通过对美元=mathcal{L}(D_P)的每个合理点为$X_P$进行全方位评价而获得。这项工作将类似Reed-Muller编码的超值代码扩展为投影代码,通过对整种代码进行评价,而不是只考虑非零坐标的点。该代码的尺寸以多元值$P$的集点数为单位,并描述在最小距离上调低的算法技术。