In 1968, Liu described the problem of securing documents in a shared secret project. In an example, at least six out of eleven participating scientists need to be present to open the lock securing the secret documents. Shamir proposed a mathematical solution to this physical problem in 1979, by designing an efficient $k$-out-of-$n$ secret sharing scheme based on Lagrange's interpolation. Liu and Shamir also claimed that the minimal solution using physical locks is clearly impractical and exponential in the number of participants. In this paper we relax some implicit assumptions in their claim and propose an optimal physical solution to the problem of Liu that uses physical padlocks, but the number of padlocks is not greater than the number of participants. Then, we show that no device can do better for $k$-out-of-$n$ threshold padlock systems as soon as $k\geq{\sqrt{2n}}$, which holds true in particular for Liu's example. More generally, we derive bounds required to implement any threshold system and prove a lower bound of $\mathcal{O}{\log(n)}$ padlocks for any threshold larger than $2$. For instance we propose an optimal scheme reaching that bound for $2$-out-of-$n$ threshold systems and requiring less than $2\log_2(n)$ padlocks. We also discuss more complex access structures, a wrapping technique, and other sublinear realizations like an algorithm to generate $3$-out-of-$n$ systems with $2.5\sqrt{n}$ padlocks. Finally we give an algorithm building $k$-out-of-$n$ threshold padlock systems with only $\mathcal{O}{\log(n)^{k-1}}$ padlocks. Apart from the physical world, our results also show that it is possible to implement secret sharing over small fields.


翻译:1968年,刘晓波描述了在一个共享秘密项目中获取文件的问题。举个例子,在11名参与的科学家中,至少有6名需要在场才能打开保密文件的锁。1979年,沙米尔提议了一个基于Lagrange的内插法的美元-美元-美元-美元-美元-美元-秘密共享方案,以此解决这一实际问题。刘和沙米尔还声称,使用物理锁的最起码的解决方案显然不切实际且指数化的参与者人数。在本文中,我们放松了他们索赔中的一些隐含假设,并提出了一种最佳的物理解决方案,以解决使用物理挂锁的刘问题。但挂锁的数量并不大于参与者的数量。然后,我们表明,只要用美元-美元-美元-美元-美元-美元-美元-美元-美元(美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-一个比其他系统更能显示的固定系统-一美元-一美元-一美元-美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-比一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-一美元-

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年7月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月25日
Arxiv
0+阅读 · 2021年5月25日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
8+阅读 · 2019年7月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员