The design and engineering of molecular communication (MC) components capable of processing chemical concentration signals is the key to unleashing the potential of MC for interdisciplinary applications. By controlling the signaling pathway and molecule exchange between cell devices, synthetic biology provides the MC community with tools and techniques to achieve various signal processing functions. In this paper, we propose a design framework to realize any order concentration shift keying (CSK) systems based on simple and reusable single-input single-output cells. The design framework also exploits the distributed multicellular consortia with spatial segregation, which has advantages in system scalability, low genetic manipulation, and signal orthogonality. We also create a small library of reusable engineered cells and apply them to implement binary CSK (BCSK) and quadruple CSK (QCSK) systems to demonstrate the feasibility of our proposed design framework. Importantly, we establish a mathematical framework to theoretically characterize our proposed distributed multicellular systems. Specially, we divide a system into fundamental building blocks, from which we derive the impulse response of each block and the cascade of the impulse responses leads to the end-to-end response of the system. Simulation results obtained from the agent-based simulator BSim not only validate our CSK design framework but also demonstrate the accuracy of the proposed mathematical analysis.
翻译:设计和工程化能够处理化学浓度信号的分子通信(MC)组件是释放MC在跨学科应用中的潜力的关键。通过控制信号通路和细胞设备之间的分子交换,合成生物学为MC社区提供了实现各种信号处理功能的工具和技术。在本文中,我们提出了一个设计框架,基于简单和可重复使用的单输入单输出细胞实现任意级别的浓度移位键控(CSK)系统。设计框架还利用了具有空间分离的分布式多细胞协作,这样做有系统可扩展性、低基因操作和信号正交性的优点。我们还创建了一个可重复使用的工程细胞库,并将其应用于实现二进制CSK(BCSK)和四重CSK(QCSK)系统,以展示我们提出的设计框架的可行性。重要的是,我们建立了一个数学框架来理论上表征我们提出的分布式多细胞系统。特别地,我们将系统分成基本构建块,从中导出每个块的冲击响应,并且级联冲激响应可导致系统的端到端响应。从基于代理的模拟器BSim获得的仿真结果,不仅验证了我们的CSK设计框架,还证明了所提出的数学分析的准确性。