As a result of increasingly adopted machine learning algorithms and ubiquitous sensors, many 'perception-to-control' systems have been deployed in various settings. For these systems to be trustworthy, we need to improve their robustness with adversarial training being one approach. In this work, we propose a gradient-free adversarial training technique, called AutoJoin. AutoJoin is a very simple yet effective and efficient approach to produce robust models for imaged-based autonomous maneuvering. Compared to other SOTA methods with testing on over 5M perturbed and clean images, AutoJoin achieves significant performance increases up to the 40% range under perturbed datasets while improving on clean performance for almost every dataset tested. In particular, AutoJoin can triple the clean performance improvement compared to the SOTA work by Shen et al. Regarding efficiency, AutoJoin demonstrates strong advantages over other SOTA techniques by saving up to 83% time per training epoch and 90% training data. The core idea of AutoJoin is to use a decoder attachment to the original regression model creating a denoising autoencoder within the architecture. This allows the tasks 'steering' and 'denoising sensor input' to be jointly learnt and enable the two tasks to reinforce each other's performance.
翻译:由于越来越多地采用机器学习算法和无处不在的传感器, 许多“ 感知到控制” 系统被安装在各种设置中。 这些系统要值得信赖, 我们需要提高它们的稳健性能, 对抗性培训是一种方法。 在这项工作中, 我们提出了一种无梯度的对抗性培训技术, 叫做 AutoJoin。 AutoJoin 是一种非常简单、有效且高效的方法, 用来生成基于图像的自主操控模型。 与其他SOTA方法相比, 测试了 5M 以上环形和清洁图像的SOTA 方法相比, AutoJoin 取得了显著的性能提升, 高达 超过 40% 透过 的数据集下的40% 。 特别是, AutoJoin 可以比SOTA 等的工作提高三倍的清洁性能改进。 关于效率, Autojoin 展示了其他SOTA技术的优势, 节省了高达83%的时间, 90% 培训数据。 AutoJoin 的核心想法是使用与原始回归模型的解码附加装置, 创建一个解调式自动解析器, 并强化了每个结构内的其他感官。