The task of inducing, via continuous static state-feedback control, an asymptotically stable heteroclinic orbit in a nonlinear control system is considered in this paper. The main motivation comes from the problem of ensuring convergence to a so-called point-to-point maneuver in an underactuated mechanical system. Namely, to a smooth curve in its state--control space, which is consistent with the system dynamics and connects two (linearly) stabilizable equilibrium points. The proposed method uses a particular parameterization, together with a state projection onto the maneuver as to combine two linearization techniques for this purpose: the Jacobian linearization at the equilibria on the boundaries and a transverse linearization along the orbit. This allows for the computation of stabilizing control gains offline by solving a semidefinite programming problem. The resulting nonlinear controller, which simultaneously asymptotically stabilizes both the orbit and the final equilibrium, is time-invariant, locally Lipschitz continuous, requires no switching, and has a familiar feedforward plus feedback--like structure. The method is also complemented by synchronization function--based arguments for planning such maneuvers for mechanical systems with one degree of underactuation. Numerical simulations of the non-prehensile manipulation task of a ball rolling between two points upon the "butterfly" robot demonstrates the efficacy of the synthesis.
翻译:在非线性控制系统中,通过连续静态的状态-节奏控制诱导非线性控制系统中的静态稳定间歇轨道的任务在本文中得到了考虑。 主要动机来自确保与所谓的点到点操纵趋同的问题, 也就是通过一个作用不足的机械系统, 使其在状态- 控制空间有一个平稳的曲线, 这个曲线与系统动态一致, 并且连接两个( 线性) 稳定平衡点。 拟议的方法使用特定的参数化, 以及状态投射到操作中, 将两种线性化技术结合起来: 在边界上的电子平衡和轨道上的跨线性线性线性线化。 这允许通过解决半不精确的编程问题来计算离线控制的进展。 由此产生的非线性控制器, 它同时稳定轨道和最后平衡点。 时间- 本地 Lipschitz 连续使用, 不需要转换, 并且有两种熟悉的反馈加反馈结构 。 这个方法在模拟性滚动性操作系统下, 也用一个方向性模型性模型性模型性参数来补充一个方向-, 的模型性操作 的模型性操作 的模型 。