Querying cohesive subgraphs on temporal graphs with various time constraints has attracted intensive research interests recently. In this paper, we study a novel Temporal k-Core Query (TCQ) problem: given a time interval, find all distinct k-cores that exist within any subintervals from a temporal graph, which generalizes the previous historical k-core query. This problem is challenging because the number of subintervals increases quadratically to the span of time interval. For that, we propose a novel Temporal Core Decomposition (TCD) algorithm that decrementally induces temporal k-cores from the previously induced ones and thus reduces "intra-core" redundant computation significantly. Then, we introduce an intuitive concept named Tightest Time Interval (TTI) for temporal k-core, and design an optimization technique with theoretical guarantee that leverages TTI as a key to predict which subintervals will induce duplicated k-cores and prunes the subintervals completely in advance, thereby eliminating "inter-core" redundant computation. The complexity of optimized TCD (OTCD) algorithm no longer depends on the span of query time interval but only the scale of final results, which means OTCD algorithm is scalable. Moreover, we propose a compact in-memory data structure named Temporal Edge List (TEL) to implement OTCD algorithm efficiently in physical level with bounded memory requirement. TEL organizes temporal edges in a "timeline" and can be updated instantly when new edges arrive, and thus our approach can also deal with dynamic temporal graphs. We compare OTCD algorithm with the incremental historical k-core query on several real-world temporal graphs, and observe that OTCD algorithm outperforms it by three orders of magnitude, even though OTCD algorithm needs none precomputed index.
翻译:在具有不同时间限制的时针图中查询具有凝聚力的下层图最近引起了大量研究兴趣。 在本文中, 我们研究了一个全新的Temoral K- Core 查询( TCQ) 问题: 给一个时间间隔, 找到在任何子interval 中存在的所有不同的 k- 核心, 它概括了先前的历史 k- 核心查询。 这个问题具有挑战性, 因为次间比较的数量会提高到时间间隔的跨度。 为此, 我们提出一个新的Temalal Core 核心变异算法( TCD) 算法, 该算法会从先前引出的时间间隔中引入时间- k- Core 查询( TCQQQQ) 问题, 从而显著减少“ 内核” 重复的计算。 然后, 我们引入一个直观概念的概念概念概念概念概念概念概念概念概念概念概念概念概念, 将TTI 用于预测子间比较( k- centreval ) 的次间数和次间算算算法完全可以导致重复的 KCD,, 从而消除“ Q- 重复的计算 ” 。 因此, 在时间- 时间- 级变序变数级算法中, 我们的变变变变的变变的变的变的变变的变的变的变的变的算法,, 我们的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变算法,,, 变的变的变的变算法,, 变的变的变的变的变的算法, 变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变