Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective patient-centered therapies. The National Lung Screening Trial (NLST) was a nationwide study aimed at investigating risk factors for lung cancer. The study employed computed tomography texture analysis (CTTA), which provides objective measurements of texture patterns on CT scans, to quantify the mortality risks of lung cancer patients. Partially linear Cox models are becoming a popular tool for modeling survival outcomes, as they effectively handle both established risk factors (such as age and other clinical factors) and new risk factors (such as image features) in a single framework. The challenge in identifying the texture features that impact cancer survival is due to their sensitivity to factors such as scanner type, segmentation, and organ motion. To overcome this challenge, we propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select significant texture features and employs a deep neural network to estimate the nonparametric component of the model accurately. We prove the convergence and asymptotic properties of the estimator and compare it to other methods through extensive simulation studies, evaluating its performance in risk prediction and feature selection. The proposed method is applied to the NLST study dataset to uncover the effects of key clinical and imaging risk factors on patients' survival. Our findings provide valuable insights into the relationship between these factors and survival outcomes.


翻译:肺癌是造成全球癌症死亡的一个主要原因,突出了了解其死亡率风险对于设计有效的以病人为中心的治疗方法的重要性。全国肺癌检查试验(NLST)是一项全国性的研究,旨在调查肺癌的风险因素。这项研究采用了计算机断层纹理分析(CTTA),对CT扫描的质谱模式进行了客观的测量,以量化肺癌病人的死亡风险。部分线性Cox模型正在成为模拟生存结果的流行工具,因为它们在单一框架内有效地处理既定的风险因素(如年龄和其他临床因素)和新的风险因素(如图像特征)和新的风险因素(如图像特征)。确定影响癌症存活的质谱特征的挑战在于它们对扫描类型、分解和器官运动等因素的敏感性。为了克服这一挑战,我们建议采用一种新的惩罚性深层线性线性肿瘤模型模型(PALC),该模型将选择重要的纹理特征,并使用一个深层次的神经网络来精确地估计模型的非参数。我们证明,对癌症生存的影响的质性特征特征特征特征特征的特征特征特征特征特征特征特征,是,我们所拟进行的临床诊断结果分析的模型和结果分析中所采用的其他结果分析方法。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员