We demonstrate, in this study, that an open-domain conversational system trained on idioms or figurative language generates more fitting responses to prompts containing idioms. Idioms are part of everyday speech in many languages, across many cultures, but they pose a great challenge for many Natural Language Processing (NLP) systems that involve tasks such as Information Retrieval (IR) and Machine Translation (MT), besides conversational AI. We utilize the Potential Idiomatic Expression (PIE)-English idioms corpus for the two tasks that we investigate: classification and conversation generation. We achieve state-of-the-art (SoTA) result of 98% macro F1 score on the classification task by using the SoTA T5 model. We experiment with three instances of the SoTA dialogue model, Dialogue Generative Pre-trained Transformer (DialoGPT), for conversation generation. Their performances are evaluated using the automatic metric perplexity and human evaluation. The results show that the model trained on the idiom corpus generates more fitting responses to prompts containing idioms 71.9% of the time, compared to a similar model not trained on the idioms corpus. We contribute the model checkpoint/demo and code on the HuggingFace hub for public access.
翻译:在这项研究中,我们证明,在语言或比喻语言方面受过培训的开放域对话系统能够产生更适合的对包含语的提示的反应。 语言是许多文化中许多语言日常演讲的一部分,但对于许多自然语言处理(NLP)系统构成巨大挑战,这些系统除了对话AI之外,还涉及信息检索(IR)和机器翻译(MT)等任务。我们利用潜在单词表达(PIE)-英语语系统来完成我们调查的两项任务:分类和对话的生成。我们通过使用 SoTA T5 模式,在分类任务上取得了98%的宏观F1分的成绩。我们试验了SATA对话模式“对话Generalation Pregriminal Treed 变换器”(DialoGPT)的三个实例,以进行对话的生成。我们利用自动计量的曲解和人文评价来评价其表现。结果显示,在该单元上培训的模型对包含71.9%的智商和对话生成的即时速反应,我们实现了时间的98%的宏观F1分分,而没有在经过训练的硬体控制中心上,为类似的模型。