This paper develops an asymptotic theory for estimating the time-varying characteristics of locally stationary functional time series. We introduce a kernel-based method to estimate the time-varying covariance operator and the time-varying mean function of a locally stationary functional time series. Subsequently, we derive the convergence rate of the kernel estimator of the covariance operator and associated eigenvalue and eigenfunctions. We also establish a central limit theorem for the kernel-based locally weighted sample mean. As applications of our results, we discuss the prediction of locally stationary functional time series and methods for testing the equality of time-varying mean functions in two functional samples.


翻译:本文为估算当地固定功能时间序列的时间变化特性开发了一种无症状理论。 我们采用了以内核为基础的方法来估计当地固定功能时间序列的时间变化共变操作员和时间变化平均函数。 随后, 我们得出了共变操作员及相关源值和元元元的内核测量员的趋同率。 我们还为以内核为基础的当地加权抽样平均值设定了一个中心限值。 作为我们结果的应用, 我们讨论了对当地固定功能运行共变时间序列的预测, 以及在两个功能样本中测试时间变化平均函数平等性的方法 。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年7月19日
Arxiv
0+阅读 · 2021年7月19日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员