We prove an optimal $\Omega(n^{-1})$ lower bound on the spectral gap of Glauber dynamics for anti-ferromagnetic two-spin systems with $n$ vertices in the tree uniqueness regime. This spectral gap holds for all, including unbounded, maximum degree $\Delta$. Consequently, we have the following mixing time bounds for the models satisfying the uniqueness condition with a slack $\delta\in(0,1)$: $\bullet$ $C(\delta) n^2\log n$ mixing time for the hardcore model with fugacity $\lambda\le (1-\delta)\lambda_c(\Delta)= (1-\delta)\frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^\Delta}$; $\bullet$ $C(\delta) n^2$ mixing time for the Ising model with edge activity $\beta\in\left[\frac{\Delta-2+\delta}{\Delta-\delta},\frac{\Delta-\delta}{\Delta-2+\delta}\right]$; where the maximum degree $\Delta$ may depend on the number of vertices $n$, and $C(\delta)$ depends only on $\delta$. Our proof is built upon the recently developed connections between the Glauber dynamics for spin systems and the high-dimensional expander walks. In particular, we prove a stronger notion of spectral independence, called the complete spectral independence, and use a novel Markov chain called the field dynamics to connect this stronger spectral independence to the rapid mixing of Glauber dynamics for all degrees.


翻译:在树独特性系统中, 我们证明是最佳的 $\ omega (n ⁇ - 1}) $ 。 因此, 模型满足独特性条件的混合时间限制如下 $delta\ in 0. 1 美元: $\ bulllet$ (\ delta) n% 2\ log n$ 混合时间, 用于在树独特性制度下, 以美元为单位的反地磁双螺旋的光谱差。 这个光谱差对所有人都保持着, 包括没有约束的, 最高度$\ delta( delta) $。 因此, 模型满足独特性条件的混合时间限制如下 $delta( del- delta) $ (\ del- talta) 最大值的 美元 。 以美元( del- tal- talx) 最高值為单位的离位模式, 以美元( del- tal_ tal_ dell_ dell_ dell_ drow) lax; lax lax lax lax a- delivern.

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | 图神经网络(GNN)相关资源大列表
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月21日
Arxiv
0+阅读 · 2022年1月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | 图神经网络(GNN)相关资源大列表
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员