Neuro-encoded expression programming(NEEP) that aims to offer a novel continuous representation of combinatorial encoding for genetic programming methods is proposed in this paper. Genetic programming with linear representation uses nature-inspired operators (e.g., crossover, mutation) to tune expressions and finally search out the best explicit function to simulate data. The encoding mechanism is essential for genetic programmings to find a desirable solution efficiently. However, the linear representation methods manipulate the expression tree in discrete solution space, where a small change of the input can cause a large change of the output. The unsmooth landscapes destroy the local information and make difficulty in searching. The neuro-encoded expression programming constructs the gene string with recurrent neural network (RNN) and the weights of the network are optimized by powerful continuous evolutionary algorithms. The neural network mappings smoothen the sharp fitness landscape and provide rich neighborhood information to find the best expression. The experiments indicate that the novel approach improves training efficiency and reduces test errors on several well-known symbolic regression problems.


翻译:Neuro-encod 表达式编程(NEEP) 旨在为基因编程方法提供新型的组合编码(NEEP)的新连续表述。 本文提议了由线性表述法使用自然启发操作器(例如交叉翻转、突变)的基因编程,以调和表达方式并最终寻找模拟数据的最佳明确功能。 编码机制对于基因编程有效找到理想的解决方案至关重要。 然而, 线性表述法在离散解决方案空间操纵表达树, 在那里, 输入的微小变化可能导致产出的巨变。 不光滑的景观破坏当地信息, 并造成搜索困难。 神经编码表达式编程用经常性神经网络( RNN) 和网络的重量构建基因字符串, 通过强大的持续演进算法进行优化。 神经网络绘图平滑动了精密的健身场景, 并提供丰富的社区信息以找到最佳表达方式。 实验表明, 新式方法提高了培训效率, 并减少了几个众所周知的象征性回归问题的测试错误。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【NeurIPS 2020】通过双向传播的可扩展图神经网络
专知会员服务
27+阅读 · 2020年11月3日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
0+阅读 · 2021年6月2日
VIP会员
相关VIP内容
【NeurIPS 2020】通过双向传播的可扩展图神经网络
专知会员服务
27+阅读 · 2020年11月3日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员