Recent work has shown that not only decision trees (DTs) may not be interpretable but also proposed a polynomial-time algorithm for computing one PI-explanation of a DT. This paper shows that for a wide range of classifiers, globally referred to as decision graphs, and which include decision trees and binary decision diagrams, but also their multi-valued variants, there exist polynomial-time algorithms for computing one PI-explanation. In addition, the paper also proposes a polynomial-time algorithm for computing one contrastive explanation. These novel algorithms build on explanation graphs (XpG's). XpG's denote a graph representation that enables both theoretical and practically efficient computation of explanations for decision graphs. Furthermore, the paper pro- poses a practically efficient solution for the enumeration of explanations, and studies the complexity of deciding whether a given feature is included in some explanation. For the concrete case of decision trees, the paper shows that the set of all contrastive explanations can be enumerated in polynomial time. Finally, the experimental results validate the practical applicability of the algorithms proposed in the paper on a wide range of publicly available benchmarks.


翻译:最近的工作表明,不仅决策树(DTs)可能无法解释,而且还提出了计算一个PI解释DT的多元时间算法。本文件表明,对于全球范围称为决定图的广泛分类者(包括决策树和二进制决定图),包括决策图和多值决定图,以及它们的多值变量,存在着计算一个PI解释的多元时间算法。此外,文件还提出了计算一个对比解释的多元时间算法。这些新的算法以解释图(XpGs)为基础。XpG的表示图表显示,既可以理论计算,也可以实际有效地计算对决定图的解释。此外,文件倾向于为列举解释提供了一种实际有效的解决办法,并研究了确定某一特征是否包含在某种解释中的复杂性。关于决定树的具体案例,文件表明所有对比解释的组合可以在多元时间中进行。最后,实验结果证实了文件中在广泛范围内提出的公开基准中所提出的算法的实际适用性。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员