Machine learning (ML) algorithms are optimized for the distribution represented by the training data. For outlier data, they often deliver predictions with equal confidence, even though these should not be trusted. In order to deploy ML-based digital pathology solutions in clinical practice, effective methods for detecting anomalous data are crucial to avoid incorrect decisions in the outlier scenario. We propose a new unsupervised learning approach for anomaly detection in histopathology data based on generative adversarial networks (GANs). Compared to the existing GAN-based methods that have been used in medical imaging, the proposed approach improves significantly on performance for pathology data. Our results indicate that histopathology imagery is substantially more complex than the data targeted by the previous methods. This complexity requires not only a more advanced GAN architecture but also an appropriate anomaly metric to capture the quality of the reconstructed images.
翻译:机器学习( ML) 算法被优化, 用于以培训数据为代表的分布。 对于外部数据, 它们通常以同等的信心提供预测, 尽管这些都不值得信任。 为了在临床实践中部署基于 ML 的数字病理学解决方案, 有效的反常数据检测方法对于避免在外部假设中做出错误决定至关重要。 我们提议了一种新的未经监督的学习方法, 用于根据基因对抗网络( GANs) 进行组织病理学数据异常检测。 与医疗成像中使用的现有基于 GAN 的方法相比, 拟议的方法大大改进了病理学数据的性能。 我们的结果表明, 组织病理学图像比以往方法所针对的数据要复杂得多。 这种复杂性不仅需要一个更先进的GAN 结构, 还需要一个适当的异常度测量标准, 来捕捉重建后的图像的质量 。