In this study, we develop a novel estimation method of the quantile treatment effects (QTE) under the rank invariance and rank stationarity assumptions. Ishihara (2020) explores identification of the nonseparable panel data model under these assumptions and propose a parametric estimation based on the minimum distance method. However, the minimum distance estimation using this process is computationally demanding when the dimensionality of covariates is large. To overcome this problem, we propose a two-step estimation method based on the quantile regression and minimum distance method. We then show consistency and asymptotic normality of our estimator. Monte Carlo studies indicate that our estimator performs well in finite samples. Last, we present two empirical illustrations, to estimate the distributional effects of insurance provision on household production and of TV watching on child cognitive development.
翻译:在本研究中,我们根据等级不变和等级固定性假设,对四分位处理效应(QTE)开发了一种新的估计方法。石原(2020年)根据这些假设,探索确定不可分离的小组数据模型,并根据最低距离法提出参数估计。然而,在共差的维度很大时,使用这个过程的最低距离估计要求计算。为了克服这个问题,我们提议了一个基于四分位回归和最低距离法的两步估计方法。然后,我们显示了我们的估测器的一致性和无症状的正常性。蒙特卡洛的研究显示,我们的估测器在有限的样本中表现良好。最后,我们提出了两个经验性说明,以估计保险条款对家庭生产的分配影响以及儿童认知发展的电视观察。