In the analysis of observational studies, inverse probability weighting (IPW) is commonly used to consistently estimate the average treatment effect (ATE) or the average treatment effect in the treated (ATT). The variance of the IPW ATE estimator is often estimated by assuming the weights are known and then using the so-called "robust" (Huber-White) sandwich estimator, which results in conservative standard error (SE) estimation. Here it is shown that using such an approach when estimating the variance of the IPW ATT estimator does not necessarily result in conservative SE estimates. That is, assuming the weights are known, the robust sandwich estimator may be conservative or anti-conservative. Thus confidence intervals of the ATT using the robust SE estimate will not be valid in general. Instead, stacked estimating equations which account for the weight estimation can be used to compute a consistent, closed-form variance estimator for the IPW ATT estimator. The two variance estimators are compared via simulation studies and in a data analysis of the effect of smoking on gene expression.


翻译:在分析观察研究时,常使用反概率加权法(IPW)来一致估计平均治疗效果(ATE)或被治疗者(ATT)的平均治疗效果(ATE)或平均治疗效果。IPW ATE估计值的差异往往通过假定重量为已知重量来估计,然后使用所谓的“brobust”(Huber-White)三明治估计仪来估计,从而得出保守的标准错误(SE)估计值。这里显示,在估计IPWAT估计值的差异时,使用这种方法不一定得出保守的SE估计值。也就是说,假定重量为已知,强健的三明治估计值可能是保守的或反保守的。因此,使用稳健的SEA估计值的可信度间隔在总体上是无效的。相反,计算重量估计值的堆积估计方程式可以用来计算IPWATT估计的一致的封闭式差异估计值。两种差异估计值是通过模拟研究和对基因表达的吸烟效果进行数据分析比较的。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
32+阅读 · 2020年10月9日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员