This paper considers linear panel data models where the dependence of the regressors and the unobservables is modelled through a factor structure. The asymptotic setting is such that the number of time periods and the sample size both go to infinity. Non-strong factors are allowed and the number of factors can grow to infinity with the sample size. We study a class of two-step estimators of the regression coefficients. In the first step, factors and factor loadings are estimated. Then, the second step corresponds to the panel regression of the outcome on the regressors and the estimates of the factors and the factor loadings from the first step. Different methods can be used in the first step while the second step is unique. We derive sufficient conditions on the first-step estimator and the data generating process under which the two-step estimator is asymptotically normal. Assumptions under which using an approach based on principal components analysis in the first step yields an asymptotically normal estimator are also given. The two-step procedure exhibits good finite sample properties in simulations.


翻译:本文审视了线性面板数据模型,这些模型的回归者和不可观察者的依赖是通过一个要素结构模拟的。 无症状的设置使时间段数和样本大小都变得无穷无穷。 允许非强因素, 因素数随着样本大小而增长到无限。 我们研究一个分两步的回归系数估计值类别。 在第一步, 估计了系数和系数负荷。 然后, 第二步对应了回归者结果的小组回归, 以及从第一步到因素和要素负荷的估计值。 第一步可以使用不同的方法, 而第二步是独特的。 我们从第一步的测算仪和数据生成过程中得出足够的条件, 两步的测算器在两步的测算器中是无尽正常的。 在第一步, 假设中采用基于主要组成部分分析的方法, 得出一个无休止的正常估测器。 两步程序显示模拟中的良好定点样本属性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年11月3日
近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
71+阅读 · 2020年10月31日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
教程 | 用TensorFlow Estimator实现文本分类
机器之心
4+阅读 · 2018年5月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
教程 | 用TensorFlow Estimator实现文本分类
机器之心
4+阅读 · 2018年5月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员