This paper considers linear panel data models where the dependence of the regressors and the unobservables is modelled through a factor structure. The asymptotic setting is such that the number of time periods and the sample size both go to infinity. Non-strong factors are allowed and the number of factors can grow to infinity with the sample size. We study a class of two-step estimators of the regression coefficients. In the first step, factors and factor loadings are estimated. Then, the second step corresponds to the panel regression of the outcome on the regressors and the estimates of the factors and the factor loadings from the first step. Different methods can be used in the first step while the second step is unique. We derive sufficient conditions on the first-step estimator and the data generating process under which the two-step estimator is asymptotically normal. Assumptions under which using an approach based on principal components analysis in the first step yields an asymptotically normal estimator are also given. The two-step procedure exhibits good finite sample properties in simulations.
翻译:本文审视了线性面板数据模型,这些模型的回归者和不可观察者的依赖是通过一个要素结构模拟的。 无症状的设置使时间段数和样本大小都变得无穷无穷。 允许非强因素, 因素数随着样本大小而增长到无限。 我们研究一个分两步的回归系数估计值类别。 在第一步, 估计了系数和系数负荷。 然后, 第二步对应了回归者结果的小组回归, 以及从第一步到因素和要素负荷的估计值。 第一步可以使用不同的方法, 而第二步是独特的。 我们从第一步的测算仪和数据生成过程中得出足够的条件, 两步的测算器在两步的测算器中是无尽正常的。 在第一步, 假设中采用基于主要组成部分分析的方法, 得出一个无休止的正常估测器。 两步程序显示模拟中的良好定点样本属性。