M-quantile regression is a general form of quantile-like regression which usually utilises the Huber influence function and corresponding tuning constant. Estimation requires a nuisance scale parameter to ensure the M-quantile estimates are scale invariant, with several scale estimators having previously been proposed. In this paper we assess these scale estimators and evaluate their suitability, as well as proposing a new scale estimator based on the method of moments. Further, we present two approaches for estimating data-driven tuning constant selection for M-quantile regression. The tuning constants are obtained by i) minimising the estimated asymptotic variance of the regression parameters and ii) utilising an inverse M-quantile function to reduce the effect of outlying observations. We investigate whether data-driven tuning constants, as opposed to the usual fixed constant, for instance, at c=1.345, can improve the efficiency of the estimators of M-quantile regression parameters. The performance of the data-driven tuning constant is investigated in different scenarios using model-based simulations. Finally, we illustrate the proposed methods using a European Union Statistics on Income and Living Conditions data set.
翻译:微量回归是一种一般的微量相似回归形式,通常使用Huber 影响函数和相应的调制常数。估计要求有一个扰动比例参数,以确保微量估计是比例变异的,以前曾提出过几个比例估测器。在本文中,我们评估这些比例估测器并评估其是否合适,以及根据时间方法提出一个新的比例估测器。此外,我们提出了两种方法,用于估算数据驱动的M-量回归参数调控常数选择。调控常数通过(i) 将回归参数的估计非短暂差异最小化,以及(ii) 利用一个反微量函数来减少观测的偏差效应。我们调查数据驱动的调节常数相对于通常固定常数(例如,在c=1.345)是否能够提高M-量回归参数估算器的效率。数据驱动的调控常数常数的性能通过(i)获得。数据调节常数的性能通过使用基于模型的统计模型的模拟法和基于模型的数据模型的模拟法来调查。最后,我们用欧洲生活条件模型的模拟方法对欧盟的调整常数进行了调查。