M-quantile regression is a general form of quantile-like regression which usually utilises the Huber influence function and corresponding tuning constant. Estimation requires a nuisance scale parameter to ensure the M-quantile estimates are scale invariant, with several scale estimators having previously been proposed. In this paper we assess these scale estimators and evaluate their suitability, as well as proposing a new scale estimator based on the method of moments. Further, we present two approaches for estimating data-driven tuning constant selection for M-quantile regression. The tuning constants are obtained by i) minimising the estimated asymptotic variance of the regression parameters and ii) utilising an inverse M-quantile function to reduce the effect of outlying observations. We investigate whether data-driven tuning constants, as opposed to the usual fixed constant, for instance, at c=1.345, can improve the efficiency of the estimators of M-quantile regression parameters. The performance of the data-driven tuning constant is investigated in different scenarios using model-based simulations. Finally, we illustrate the proposed methods using a European Union Statistics on Income and Living Conditions data set.


翻译:微量回归是一种一般的微量相似回归形式,通常使用Huber 影响函数和相应的调制常数。估计要求有一个扰动比例参数,以确保微量估计是比例变异的,以前曾提出过几个比例估测器。在本文中,我们评估这些比例估测器并评估其是否合适,以及根据时间方法提出一个新的比例估测器。此外,我们提出了两种方法,用于估算数据驱动的M-量回归参数调控常数选择。调控常数通过(i) 将回归参数的估计非短暂差异最小化,以及(ii) 利用一个反微量函数来减少观测的偏差效应。我们调查数据驱动的调节常数相对于通常固定常数(例如,在c=1.345)是否能够提高M-量回归参数估算器的效率。数据驱动的调控常数常数的性能通过(i)获得。数据调节常数的性能通过使用基于模型的统计模型的模拟法和基于模型的数据模型的模拟法来调查。最后,我们用欧洲生活条件模型的模拟方法对欧盟的调整常数进行了调查。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月12日
Arxiv
0+阅读 · 2021年1月11日
VIP会员
相关VIP内容
相关资讯
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员