We present the class of Hida-Mat\'ern kernels, which is the canonical family of covariance functions over the entire space of stationary Gauss-Markov Processes. It extends upon Mat\'ern kernels, by allowing for flexible construction of priors over processes with oscillatory components. Any stationary kernel, including the widely used squared-exponential and spectral mixture kernels, are either directly within this class or are appropriate asymptotic limits, demonstrating the generality of this class. Taking advantage of its Markovian nature we show how to represent such processes as state space models using only the kernel and its derivatives. In turn this allows us to perform Gaussian Process inference more efficiently and side step the usual computational burdens. We also show how exploiting special properties of the state space representation enables improved numerical stability in addition to further reductions of computational complexity.
翻译:我们展示了Hida-Mat\'ern内核的等级,这是固定的Gaus-Markov过程整个空间的共变功能的圆锥体。它延伸到了 Mat\'ern内核,允许灵活地为带有串流组件的流程建造前科。任何固定内核,包括广泛使用的平方-极化和光谱混合内核,要么直接属于这一类别,要么属于适当的非现性界限,表明这一类别的普遍性。我们利用其马尔科维自然的特性,展示了如何代表国家空间模型等进程,例如仅使用内核及其衍生物的国家空间模型。这反过来使我们能够更有效地进行高斯进程推论,并比通常的计算负担靠边。我们还展示了如何利用国家空间代表的特殊特性,除了进一步降低计算复杂性外,还能改善数字稳定性。