Discrete data are abundant and often arise as counts or rounded data. Yet even for linear regression models, conjugate priors and closed-form posteriors are typically unavailable, which necessitates approximations such as MCMC for posterior inference. For a broad class of count and rounded data regression models, we introduce conjugate priors that enable closed-form posterior inference. Key posterior and predictive functionals are computable analytically or via direct Monte Carlo simulation. Crucially, the predictive distributions are discrete to match the support of the data and can be evaluated or simulated jointly across multiple covariate values. These tools are broadly useful for linear regression, nonlinear models via basis expansions, and model and variable selection. Multiple simulation studies demonstrate significant advantages in computing, predictive modeling, and selection relative to existing alternatives.


翻译:分解数据十分丰富,而且往往作为计数或四舍五入数据出现。但即使是线性回归模型,一般也无法获得共和前置物和封闭式后台,这就需要近似值,如用于后向推论的MCMC等近似值。对于一大类的计数和四舍四入数据回归模型,我们引入了共和前缀,以便能够进行闭合式后台推论。关键后台和预测功能是可比较分析的或通过蒙特卡洛直接模拟分析的。关键后台和预测功能是独立的,可以与数据支持相匹配的,并且可以在多个共变数值之间联合评估或模拟。这些工具对于线性回归、非线性模型通过基础扩展以及模型和变量选择大有用处。多重模拟研究显示,计算、预测型模型和选择相对于现有替代品在计算、预测性建模和选择方面具有重大优势。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员