Bures distance holds a special place among various distance measures due to its several distinguished features and finds applications in diverse problems in quantum information theory. It is related to fidelity and, among other things, it serves as a bona fide measure for quantifying the separability of quantum states. In this work, we calculate exact analytical results for the mean root fidelity and mean square Bures distance between a fixed density matrix and a random density matrix, and also between two random density matrices. In the course of derivation, we also obtain spectral density for product of above pairs of density matrices. We corroborate our analytical results using Monte Carlo simulations. Moreover, we compare these results with the mean square Bures distance between reduced density matrices generated using coupled kicked tops and find very good agreement.
翻译:Bures 距离在各种距离测量中占有特殊位置, 这是因为它有几个不同的特征, 并且发现在量子信息理论中存在着各种各样的问题。 它与忠诚有关, 并且, 除其他外, 它是量化量子状态分离的善意衡量标准 。 在这项工作中, 我们计算出固定密度矩阵和随机密度矩阵之间以及两个随机密度矩阵之间的平均直径和正方形距离的精确分析结果 。 在推断过程中, 我们还为以上密度矩阵的成份获得了光谱密度密度密度。 我们用蒙特卡洛模拟来证实我们的分析结果。 此外, 我们把这些结果与使用连接脚踢的顶部生成的低密度矩阵之间的平均平方边距离进行了比较, 并找到了非常好的一致点 。