A Monotone Minimal Perfect Hash Function (MMPHF) constructed on a set S of keys is a function that maps each key in S to its rank. On keys not in S, the function returns an arbitrary value. Applications range from databases, search engines, data encryption, to pattern-matching algorithms. In this paper, we describe LeMonHash, a new technique for constructing MMPHFs for integers. The core idea of LeMonHash is surprisingly simple and effective: we learn a monotone mapping from keys to their rank via an error-bounded piecewise linear model (the PGM-index), and then we solve the collisions that might arise among keys mapping to the same rank estimate by associating small integers with them in a retrieval data structure (BuRR). On synthetic random datasets, LeMonHash needs 35% less space than the next best competitor, while achieving about 16 times faster queries. On real-world datasets, the space usage is very close to or much better than the best competitors, while achieving up to 19 times faster queries than the next larger competitor. As far as the construction of LeMonHash is concerned, we get an improvement by a factor of up to 2, compared to the competitor with the next best space usage. We also investigate the case of keys being variable-length strings, introducing the so-called LeMonHash-VL: it needs space within 10% of the best competitors while achieving up to 3 times faster queries.


翻译:学习的单调最小完美哈希 一个在键值集合S上构建的单调最小完美哈希函数(MMPHF)是一个将每个键映射到其排名的函数。对于S中不存在的键,函数返回任意值。应用范围包括数据库、搜索引擎、数据加密和模式匹配算法。在本文中,我们介绍了一种新技术LeMonHash,用于构建整数的MMPH。LeMonHash的核心思想非常简单而有效:我们通过一个误差有界的分段线性模型(PGM索引)学习了一个从键到它们的排名的单调映射,然后我们在检索数据结构(BuRR)中将映射到同一排名的键赋予小整数,以解决可能产生的冲突。在合成随机数据集上,LeMonHash所需的空间比下一个最佳竞争者少35%,同时查询速度快约16倍。在真实数据集上,空间使用与最佳竞争者非常接近或更好,同时查询速度比下一个更大的竞争者快达19倍。就LeMonHash的构建而言,在空间使用方面,我们获得了比下一个最佳空间使用竞争者高达2倍的改进。我们还研究了键值为可变长度字符串的情况,引入了所谓的LeMonHash-VL:它所需空间不到最佳竞争者的10%,同时查询速度快达3倍。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
30+阅读 · 2022年3月12日
专知会员服务
35+阅读 · 2021年7月7日
【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
74+阅读 · 2021年1月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月4日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员