Recent advances in complex network analysis opened a wide range of possibilities for applications in diverse fields. The power of the network analysis depends on the node features. The topology-based node features are realizations of local and global spatial relations and node connectivity structure. Hence, collecting correct information on the node characteristics and the connectivity structure of the neighboring nodes plays the most prominent role in node classification and link prediction in complex network analysis. The present work introduces a new feature abstraction method, namely the Transition Probabilities Matrix (TPM), based on embedding anonymous random walks on feature vectors. The node feature vectors consist of transition probabilities obtained from sets of walks in a predefined radius. The transition probabilities are directly related to the local connectivity structure, hence correctly embedded onto feature vectors. The success of the proposed embedding method is tested on node identification/classification and link prediction on three commonly used real-world networks. In real-world networks, nodes with similar connectivity structures are common; Thus, obtaining information from similar networks for predictions on the new networks is the distinguishing characteristic that makes the proposed algorithm superior to the state-of-the-art algorithms in terms of cross-networks generalization tasks.
翻译:复杂的网络分析最近的进展为不同领域的应用开辟了各种可能性。网络分析的力量取决于节点特征。基于地形的节点特征是地方和全球空间关系和节点连接结构的实现。因此,收集关于相邻节点的节点特点和连接结构的正确信息在节点分类和复杂网络分析中的链接预测中发挥着最显著的作用。目前的工作引入了一种新的特征抽象方法,即基于在特征矢量上嵌入匿名随机行走的过渡概率矩阵(TPM)。节点特征矢量包括从预先确定的半径行走各组中获得的过渡概率。过渡概率与本地连接结构直接相关,因此正确地嵌入特性矢量。拟议嵌入方法的成功通过对三种常用真实世界网络的节点识别/分类和链接预测进行测试。在现实世界网络中,类似连接结构的节点是常见的;因此,从类似网络的网络获得预测信息,新网络的预测是使拟议的跨轨算任务在通用的矩阵上优于状态矩阵的特征。