Despite the success of sequence-to-sequence (seq2seq) models in semantic parsing, recent work has shown that they fail in compositional generalization, i.e., the ability to generalize to new structures built of components observed during training. In this work, we posit that a span-based parser should lead to better compositional generalization. we propose SpanBasedSP, a parser that predicts a span tree over an input utterance, explicitly encoding how partial programs compose over spans in the input. SpanBasedSP extends Pasupat et al. (2019) to be comparable to seq2seq models by (i) training from programs, without access to gold trees, treating trees as latent variables, (ii) parsing a class of non-projective trees through an extension to standard CKY. On GeoQuery, SCAN and CLOSURE datasets, SpanBasedSP performs similarly to strong seq2seq baselines on random splits, but dramatically improves performance compared to baselines on splits that require compositional generalization: from $61.0 \rightarrow 88.9$ average accuracy.


翻译:尽管语义解析的序列到序列模型(seq2seq)取得了成功,但最近的工作表明,这些模型在拼写概括性模型(seq2seq)方面没有成功,即能够将培训期间观察到的组件推广到新建的结构中。在这项工作中,我们假设一个基于跨基的剖析器可以导致更好的拼写性概括化。我们提议SpanBaseSP,一个在输入语句上预测横跨一棵树的剖析器,明确编码部分程序如何在输入的宽度上构成部分程序。SpanBaseSP扩展了Pasupat等人(2019年),使其与后续2seq模型相仿,方法是(一)从没有金树、将树木作为潜在变量处理的方案培训,(二)通过扩展到标准 CKYEKY(C),将非投影树类分类为非投影树。关于GeoQuery、SCAN和CLOSURE数据集,SpanBedSP在随机分裂方面表现类似于坚固的后2eqeq基线,但大大改进了业绩,而比分离的基线要求配置精确度为61.088.9。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
71+阅读 · 2019年11月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Compositional Generalization in Image Captioning
Arxiv
3+阅读 · 2019年9月16日
Arxiv
3+阅读 · 2019年3月1日
Symbolic Priors for RNN-based Semantic Parsing
Arxiv
3+阅读 · 2018年9月20日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员