Networks are commonly used to model complex systems. The different entities in the system are represented by nodes of the network and their interactions by edges. In most real life systems, the different entities may interact in different ways necessitating the use of multiplex networks where multiple links are used to model the interactions. One of the major tools for inferring network topology is community detection. Although there are numerous works on community detection in single-layer networks, existing community detection methods for multiplex networks mostly learn a common community structure across layers and do not take the heterogeneity across layers into account. In this paper, we introduce a new multiplex community detection method that identifies communities that are common across layers as well as those that are unique to each layer. The proposed method, Multiplex Orthogonal Nonnegative Matrix Tri-Factorization, represents the adjacency matrix of each layer as the sum of two low-rank matrix factorizations corresponding to the common and private communities, respectively. Unlike most of the existing methods, which require the number of communities to be pre-determined, the proposed method also introduces a two stage method to determine the number of common and private communities. The proposed algorithm is evaluated on synthetic and real multiplex networks, as well as for multiview clustering applications, and compared to state-of-the-art techniques.


翻译:通常使用网络来模拟复杂的系统。系统中的不同实体以网络的节点和边缘的相互作用为代表。在大多数现实生活中,不同的实体可能以不同的方式互动,从而需要使用多个链接来模拟互动的多层网络。推断网络地形学的主要工具之一是社区检测。虽然在单层网络中有许多关于社区检测的工作,但多层网络的现有社区检测方法大多学习跨层的共同社区结构,不考虑各层之间的差异性。在本文中,我们采用新的多层社区检测方法,确定各层之间共同的社区以及每一层独有的社区。拟议的方法,即多层Orthogonal无偏向矩阵三要素化,代表了每个层的相近矩阵,分别代表了与普通和私人社区相对的两个低级矩阵因子的组合之和。与大多数现有方法不同,这些方法要求预先确定社区的数目。在本文中,拟议的方法还引入了两种阶段方法,用以确定不同层次之间常见的社群以及每个层的社区以及每个层所特有的社区之间的社区。拟议的方法,即多层次网络和私人组合的组合,是用来确定共同和私人组合的。拟议矩阵的多层次和组合。

0
下载
关闭预览

相关内容

在网络中发现社区(称为社区检测/发现)是网络科学中的一个基本问题,在过去的几十年中引起了很多关注。 近年来,随着对大数据的大量研究,另一个相关但又不同的问题(称为社区搜索)旨在寻找包含查询节点的最有可能的社区,这已引起了学术界和工业界的广泛关注,它是社区检测问题的依赖查询的变体。
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员