We present a novel approach for high-order accurate numerical differentiation on unstructured meshes of quadrilateral elements. To differentiate a given function, an auxiliary function with greater smoothness properties is defined which when differentiated provides the derivatives of the original function. The method generalises traditional finite difference methods to meshes of arbitrary topology in any number of dimensions for any order of derivative and accuracy. We demonstrate the accuracy of the numerical scheme using dual quadrilateral meshes and a refinement method based on subdivision surfaces. The scheme is applied to the solution of a range of partial differential equations, including both linear and nonlinear, and second and fourth order equations.
翻译:我们提出了一个新颖的方法,用于对四边形元素的无结构的网格进行高层次准确的数值区分。为了区分某一功能,界定了具有更顺畅特性的辅助功能,在区分时提供原始函数的衍生物。该方法概括了任意表层的任意表层在任何层面的传统的有限差别方法,以任何衍生和精确顺序排列。我们显示了使用双四边色和基于子形表面的精细方法的数值方法的准确性。该方法用于解决一系列部分差别方程,包括线性和非线性方程,以及第二和第三级方程。