We present a bottom-up differentiable relaxation of the process of drawing points, lines and curves into a pixel raster. Our approach arises from the observation that rasterising a pixel in an image given parameters of a primitive can be reformulated in terms of the primitive's distance transform, and then relaxed to allow the primitive's parameters to be learned. This relaxation allows end-to-end differentiable programs and deep networks to be learned and optimised and provides several building blocks that allow control over how a compositional drawing process is modelled. We emphasise the bottom-up nature of our proposed approach, which allows for drawing operations to be composed in ways that can mimic the physical reality of drawing rather than being tied to, for example, approaches in modern computer graphics. With the proposed approach we demonstrate how sketches can be generated by directly optimising against photographs and how auto-encoders can be built to transform rasterised handwritten digits into vectors without supervision. Extensive experimental results highlight the power of this approach under different modelling assumptions for drawing tasks.
翻译:我们提出一个自下而上的、可自上而上的、可自上而上的松动的绘图点、线条和曲线过程,形成像素弧弧。我们的方法来自这样一种观察,即在原始的图像给定参数中的像素可按原始的距离变换重新进行,然后放松,以便了解原始的参数。这种放松允许从端到端的不同程序和深层次的网络学习和优化,并提供若干构件,以控制如何模拟成像绘制过程。我们强调我们拟议方法的自下而上的性质,它使得绘图操作能够以能够模仿绘图的物理现实的方式组成,而不是与现代计算机图形中的方法捆绑在一起。我们用拟议的方法来说明如何通过直接对照片进行优化来产生草图,以及如何在没有监督的情况下建立自动编集器,将光成的手写数字转换成矢量。广泛的实验结果突出了在不同的模拟假设下绘制任务的方法的力量。