We derive a model for the optimization of bending and torsional rigidity of non-homogeneous elastic rods, by studying a sharp interface shape optimization problem with perimeter penalization for the rod cross section, that treats the resulting torsional and bending rigidities as objectives. We then formulate a phase field approximation to the optimization problem and show $\Gamma$-convergence to the aforementioned sharp interface model. This also implies existence of minimizers for the sharp interface optimization problem. Finally, we numerically find minimizers of the phase field problem using a steepest descent approach and relate the resulting optimal shapes to the development of plant morphology.
翻译:我们通过研究一个尖锐的界面形状优化问题和对杆交叉部分的周边处罚,来形成一个优化非同质弹性棒弯曲和螺旋僵化的模型,将由此造成的扭角硬化和弯曲硬化作为目标。然后我们制定一个与优化问题相近的阶段字段,并显示上述尖锐界面模型的“$\Gamma$-convergy”。这还意味着存在尖锐界面优化问题的最小化器。最后,我们用最陡峭的下降法从数字上找到阶段场问题的最小化器,并将由此产生的最佳形状与植物形态的发展联系起来。