Prediction tasks about students have practical significance for both student and college. Making multiple predictions about students is an important part of a smart campus. For instance, predicting whether a student will fail to graduate can alert the student affairs office to take predictive measures to help the student improve his/her academic performance. With the development of information technology in colleges, we can collect digital footprints which encode heterogeneous behaviors continuously. In this paper, we focus on modeling heterogeneous behaviors and making multiple predictions together, since some prediction tasks are related and learning the model for a specific task may have the data sparsity problem. To this end, we propose a variant of LSTM and a soft-attention mechanism. The proposed LSTM is able to learn the student profile-aware representation from heterogeneous behavior sequences. The proposed soft-attention mechanism can dynamically learn different importance degrees of different days for every student. In this way, heterogeneous behaviors can be well modeled. In order to model interactions among multiple prediction tasks, we propose a co-attention mechanism based unit. With the help of the stacked units, we can explicitly control the knowledge transfer among multiple tasks. We design three motivating behavior prediction tasks based on a real-world dataset collected from a college. Qualitative and quantitative experiments on the three prediction tasks have demonstrated the effectiveness of our model.
翻译:学生的预测任务对学生和大学都具有实际意义。 对学生进行多重预测是智能校园的一个重要部分。 对学生进行多重预测是智能校园的重要部分。 例如,预测学生是否会毕业可以提醒学生事务办公室采取预测措施,帮助学生提高学业成绩。随着大学信息技术的发展,我们可以收集数字足迹,以不断将差异行为纳入不同的行为。在本文中,我们侧重于模拟差异行为和作出多重预测,因为有些预测任务是相互关联的,学习特定任务的模型可能会有数据广度问题。为此,我们提议了一个LSTM的变种和软注意机制。拟议的LSTM能够从不同的行为序列中学习学生的剖析-认知表现。拟议的软注意机制可以动态地学习每个学生不同日的不同重要性程度。在这样的情况下,混杂行为可以很好地建模。为了模拟多种预测任务之间的相互作用,我们提议了一个基于数据宽大的共享机制。为此,我们可以在堆叠的单元的帮助下,明确控制从多种行为序列中学习学生的辨识-觉悟。我们设计了三个基于大学的预测任务。 我们设计了一种真实的实验任务。