Existing learning from demonstration algorithms usually assume access to expert demonstrations. However, this assumption is limiting in many real-world applications since the collected demonstrations may be suboptimal or even consist of failure cases. We therefore study the problem of learning from imperfect demonstrations by learning a confidence predictor. Specifically, we rely on demonstrations along with their confidence values from a different correspondent environment (source environment) to learn a confidence predictor for the environment we aim to learn a policy in (target environment -- where we only have unlabeled demonstrations.) We learn a common latent space through adversarial distribution matching of multi-length partial trajectories to enable the transfer of confidence across source and target environments. The learned confidence reweights the demonstrations to enable learning more from informative demonstrations and discarding the irrelevant ones. Our experiments in three simulated environments and a real robot reaching task demonstrate that our approach learns a policy with the highest expected return.
翻译:然而,这一假设在许多现实世界应用中是有限的,因为所收集的演示可能是不理想的,甚至包括失败案例。因此,我们研究通过学习信心预测器从不完善的演示中学习的问题。具体地说,我们依靠不同记者环境(源环境)的演示及其信心价值来学习一种信心预测器来了解我们争取在(目标环境 -- -- 在那里我们只有未标记的演示)中学习的政策的环境。 我们通过对抗性分布匹配多长的局部轨迹来学习共同的潜在空间,以便能够在源地和目标环境之间转移信任。我们学到了信心,对演示进行再加权,以便能够从信息化的演示中更多地学习,并抛弃无关的演示。我们在三个模拟环境中的实验和一个真正的机器人完成的任务表明,我们的方法是在最预期的回报中学习一项政策。