Social ambiance describes the context in which social interactions happen, and can be measured using speech audio by counting the number of concurrent speakers. This measurement has enabled various mental health tracking and human-centric IoT applications. While on-device Socal Ambiance Measure (SAM) is highly desirable to ensure user privacy and thus facilitate wide adoption of the aforementioned applications, the required computational complexity of state-of-the-art deep neural networks (DNNs) powered SAM solutions stands at odds with the often constrained resources on mobile devices. Furthermore, only limited labeled data is available or practical when it comes to SAM under clinical settings due to various privacy constraints and the required human effort, further challenging the achievable accuracy of on-device SAM solutions. To this end, we propose a dedicated neural architecture search framework for Energy-efficient and Real-time SAM (ERSAM). Specifically, our ERSAM framework can automatically search for DNNs that push forward the achievable accuracy vs. hardware efficiency frontier of mobile SAM solutions. For example, ERSAM-delivered DNNs only consume 40 mW x 12 h energy and 0.05 seconds processing latency for a 5 seconds audio segment on a Pixel 3 phone, while only achieving an error rate of 14.3% on a social ambiance dataset generated by LibriSpeech. We can expect that our ERSAM framework can pave the way for ubiquitous on-device SAM solutions which are in growing demand.
翻译:社交氛围描述社交互动发生的上下文,并可以通过计算同时演讲者的数量来进行测量。这种测量已经实现了各种精神健康追踪和人性化IoT应用。虽然在设备上进行社交氛围测量是非常有利的,以确保用户隐私,从而促进广泛应用上述应用,但现有的基于深度神经网络(DNNs)的实时SAM方案的计算复杂度与移动设备上的常常受限资源相矛盾。此外,由于各种隐私限制和所需的人力,临床情况下可以获得的有限标注数据,使得关于SAM的可行准确性进一步受到挑战。为此,我们提出了一种专门用于提高移动SAM解决方案的可行准确性与硬件效率之间平衡的神经架构搜索框架ERSAM。具体而言,我们的ERSAM框架可以自动搜索推动移动SAM解决方案的可行准确性与硬件效率之间的最佳权衡的DNNs。例如,在Pixel 3手机上,ERSAM提供的DNN仅在5秒音频段上消耗40 mW x 12 h的能量和0.05秒的处理延迟,并仅在由LibriSpeech生成的社交氛围数据集上实现错误率14.3%。我们可以预计,我们的ERSAM框架可以为广泛需求的设备上SAM解决方案铺平道路。