Computer vision techniques have empowered underwater robots to effectively undertake a multitude of tasks, including object tracking and path planning. However, underwater optical factors like light refraction and absorption present challenges to underwater vision, which cause degradation of underwater images. A variety of underwater image enhancement methods have been proposed to improve the effectiveness of underwater vision perception. Nevertheless, for real-time vision tasks on underwater robots, it is necessary to overcome the challenges associated with algorithmic efficiency and real-time capabilities. In this paper, we introduce Lightweight Underwater Unet (LU2Net), a novel U-shape network designed specifically for real-time enhancement of underwater images. The proposed model incorporates axial depthwise convolution and the channel attention module, enabling it to significantly reduce computational demands and model parameters, thereby improving processing speed. The extensive experiments conducted on the dataset and real-world underwater robots demonstrate the exceptional performance and speed of proposed model. It is capable of providing well-enhanced underwater images at a speed 8 times faster than the current state-of-the-art underwater image enhancement method. Moreover, LU2Net is able to handle real-time underwater video enhancement.
翻译:暂无翻译