Fully Convolutional Data Description (FCDD), an explainable version of the Hypersphere Classifier (HSC), directly addresses image anomaly detection (AD) and pixel-wise AD without any post-hoc explainer methods. The authors claim that FCDD achieves results comparable with the state-of-the-art in sample-wise AD on Fashion-MNIST and CIFAR-10 and exceeds the state-of-the-art on the pixel-wise task on MVTec-AD. We reproduced the main results of the paper using the author's code with minor changes and provide runtime requirements to achieve if (CPU memory, GPU memory, and training time). We propose another analysis methodology using a critical difference diagram, and further investigate the test performance of the model during the training phase.
翻译:全面进化数据说明(FCDD)是超视距分类(HSC)的一种可解释版本,直接涉及图像异常检测(AD)和像素误差,没有采用任何解析后的方法。作者称,FCDD取得的结果与时尚和MNIST和CIFAR-10样本法中的最新数据相似,超过了MVTec-AD等分级任务的最新数据。我们用作者的代码略作改动,复制了文件的主要结果,并提供了如要达到(CPU记忆、GPU记忆和培训时间)的运行时间要求。我们建议了另一种使用关键差异图的分析方法,并进一步调查模型在培训阶段的测试性能。