Large Language Model (LLM) inference has emerged as a fundamental paradigm. In real-world scenarios, variations in output length cause severe workload imbalance in the decode phase, particularly for long-output reasoning tasks. Existing systems, such as PD disaggregation architectures, rely on static prefill-to-decode scheduling, which often results in SLO violations and OOM failures under evolving decode workloads. In this paper, we propose ARES, an adaptive decoding rescheduling system powered by length prediction to anticipate future workloads. Our core contributions include: (1) A lightweight and continuous LLM-native prediction method that leverages LLM hidden state to model remaining generation length with high precision (reducing MAE by 49.42%) and low overhead (cutting predictor parameters by 93.28%); (2) A rescheduling solution in decode phase with : A dynamic balancing mechanism that integrates current and predicted workloads, reducing P99 TPOT by 74.77% and achieving up to 2.24 times higher goodput.
翻译:暂无翻译