This paper proposes an impulse response modeling in presence of input and noisy output of a linear time-invariant (LTI) system. The approach utilizes Relative Entropy (RE) to choose the optimum impulse response estimate, optimum time delay and optimum impulse response length. The desired RE is the Kulback-Lielber divergence of the estimated distribution from its unknown true distribution. A unique probabilistic validation approach estimates the desired relative entropy and minimizes this criterion to provide the impulse response estimate. Classical methods have approached this system modeling problem from two separate angles for the time delay estimation and for the order selection. Time delay methods focus on time delay estimate minimizing various proposed criteria, while the existing order selection approaches choose the optimum impulse response length based on their proposed criteria. The strength of the proposed RE based method is in using the RE based criterion to estimate both the time delay and impulse response length simultaneously. In addition, estimation of the noise variance, when the Signal to Noise Ratio (SNR) is unknown is also concurrent and is based on optimizing the same RE based criterion. The RE based approach is also extended for online impulse response estimations. The online method reduces the model estimation computational complexity upon the arrival of a new sample. The introduced efficient stopping criteria for this online approaches is extremely valuable in practical applications. Simulation results illustrate precision and efficiency of the proposed method compared to the conventional time delay or order selection approaches.


翻译:本文提议在线性时差(LTI)系统投入和噪音输出的情况下,建立脉冲反应模型。该方法利用相对 Entropy (RE) 选择最佳冲动反应估计、最佳时间延迟和最佳冲动反应长度。理想的RE是估计分布与未知真实分布之间的 Kulback-Lielber 差异。一个独特的概率验证方法估计所期望的相对回旋率,并尽量减少这一标准,以提供脉冲反应估计。经典方法从两个不同的角度处理这个系统模拟问题,即时间延迟估计和订单选择。时间延迟方法侧重于时间估计最大限度地减少各种拟议标准,而现有订单选择方法则根据拟议标准选择最佳冲动反应长度。提议的RE方法的强度是使用基于RE的标准同时估计时间延迟和冲动反应长度。此外,当信号对噪音比比比比比比率(SNRR) 典型方法也以优化基于同一RE的标准为基础。基于RE的方法也延长了时间估计时间间隔方法,而基于现有命令选择方法选择方法根据它们选择的最佳时间估计。 在线选择方法通过极具价值的精度的精确度减少了常规选择方法,这种选择方法将降低。这种选择方法的模型的精确性精确性方法将降低。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月8日
Arxiv
0+阅读 · 2022年11月7日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员