Study populations are typically sampled from limited points in space and time, and marginalized groups are underrepresented. To assess the external validity of randomized and observational studies, we propose and evaluate the worst-case treatment effect (WTE) across all subpopulations of a given size, which guarantees positive findings remain valid over subpopulations. We develop a semiparametrically efficient estimator for the WTE that analyzes the external validity of the augmented inverse propensity weighted estimator for the average treatment effect. Our cross-fitting procedure leverages flexible nonparametric and machine learning-based estimates of nuisance parameters and is a regular root-$n$ estimator even when nuisance estimates converge more slowly. On real examples where external validity is of core concern, our proposed framework guards against brittle findings that are invalidated by unanticipated population shifts.
翻译:为了评估随机和观察研究的外部有效性,我们提议并评价对特定规模的所有亚群体最坏的治疗效果(WTE),这保证了对亚人口的积极调查结果依然有效。我们为WTE开发了一个半对称高效的估算器,用于分析扩大的反向加权加权测算器对平均治疗效果的外部有效性。我们的交叉应用程序利用了对骚扰参数的灵活、非参数和机器学习估计值,并且即使在对骚扰的估计比较缓慢时也是定期的根值-元估算值。关于外部有效性是核心关切的实际例子,我们提议的框架防范因人口意外变动而无效的零碎结论。