Neural operators are a popular technique in scientific machine learning to learn a mathematical model of the behavior of unknown physical systems from data. Neural operators are especially useful to learn solution operators associated with partial differential equations (PDEs) from pairs of forcing functions and solutions when numerical solvers are not available or the underlying physics is poorly understood. In this work, we attempt to provide theoretical foundations to understand the amount of training data needed to learn time-dependent PDEs. Given input-output pairs from a parabolic PDE in any spatial dimension $n\geq 1$, we derive the first theoretically rigorous scheme for learning the associated solution operator, which takes the form of a convolution with a Green's function $G$. Until now, rigorously learning Green's functions associated with time-dependent PDEs has been a major challenge in the field of scientific machine learning because $G$ may not be square-integrable when $n>1$, and time-dependent PDEs have transient dynamics. By combining the hierarchical low-rank structure of $G$ together with randomized numerical linear algebra, we construct an approximant to $G$ that achieves a relative error of $\smash{\mathcal{O}(\Gamma_\epsilon^{-1/2}\epsilon)}$ in the $L^1$-norm with high probability by using at most $\smash{\mathcal{O}(\epsilon^{-\frac{n+2}{2}}\log(1/\epsilon))}$ input-output training pairs, where $\Gamma_\epsilon$ is a measure of the quality of the training dataset for learning $G$, and $\epsilon>0$ is sufficiently small.
翻译:神经操作员是科学机器学习从数据中学习未知物理系统行为数学模型的流行技术。 神经操作员对于学习与部分差异方程式( PDEs) 相关的解决方案操作员特别有用, 当没有数字解答器或基础物理不易理解时, 则会从一对强制函数和解决方案中学习部分差异方程式( PDEs) 。 在这项工作中, 我们试图提供理论基础, 以理解学习基于时间的 PDE 所需的培训数据数量。 在任何空间维度( n\geq 1 $) 的参数 PDE 中, 我们为学习相关的解决方案操作员学习第一个在理论上严格学习与部分差异方程式( $G$) 相关的解决方案操作员( PDE)。 直到现在, 严格学习与时间依赖的PDDE有关的绿色函数一直是一大挑战, 因为$ > 1, 和时间依赖的PDEsentral $_ lax_ laxal_ laxal_ laxal_ laxal_ gal_ laxal_ laxal_ gal_ laxal_ gal_ laxal_ laxal_ g_ laxal_ dal_ g_ dal_ lax_ lausal_ dal_ g_ lausal_ moudal_ g_ dal_ g_ g_ molog_ g_ la_ dal_ la_ molog_ lax_ lax_ modal_ molog) modal_ modal_ modal_ modal_ dal_ modal_ modal_ modal_ modal_ modal_ modal_ dal_ modal_ modal_ modal_ modal_ modal_ modal_ modaldaldal_ modaldal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ modal_ $_ $_ $_